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Abstract
We report progress in constructing Boltzmann weights for integrable three-
dimensional lattice spin models. We show that a large class of vertex
solutions to the modified tetrahedron equation (MTE) can be conveniently
parametrized in terms of Nth roots of theta functions on the Jacobian of
a compact algebraic curve. Fay’s identity guarantees the Fermat relations
and the classical equations of motion for the parameters determining the
Boltzmann weights. Our parametrization allows us to write a simple formula
for fused Boltzmann weights R which describe the partition function of an
arbitrary open box and which also obey the modified tetrahedron equation.
Imposing periodic boundary conditions we observe that the R satisfy the normal
tetrahedron equation. The scheme described contains the Zamolodchikov–
Baxter–Bazhanov model and the chessboard model as special cases.

PACS numbers: 05.45.−a, 05.50.+q
Mathematics Subject Classification: 82B23, 70H06

Introduction

The tetrahedron equation is the three-dimensional generalization of the Yang–Baxter equation
which guarantees the existence of commuting transfer matrices. The importance of Yang–
Baxter equations for modern mathematics and mathematical physics is well known. However,
the nature of the tetrahedron equation is much less understood, mainly because it is a much
more complicated equation.

0305-4470/04/041159+21$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1159

http://stacks.iop.org/ja/37/1159


1160 G von Gehlen et al

Given the physical interest in understanding the nature of the singularities which give rise
to 3D phase transitions, any effort which gets us closer to analytic results for 3D statistical
systems seems worthwhile. What has been achieved recently is to construct large classes
of 3D solvable models with ZN -spin variables and to streamline the otherwise complicated
formalism. Much more work is needed to find analytic results for partition functions and order
parameters. The only available result from Baxter [26] does not lend itself to generalizations.

The first solution of the tetrahedron equation was obtained in 1980 by Zamolodchikov
[1, 2] and then generalized by Baxter and Bazhanov [3] (ZBB model) and others [4]. These
models have ZN -spin variables and solve the IRC (interaction round a cube) version of the
tetrahedron equation. Later the solution of the dual equation, the vertex tetrahedron equation,
was also obtained [5], generalizing several vertex solutions known previously [6, 7]. Here we
shall consider only vertex-type solutions, which are usually denoted by R, the symmetry will
include a ZN . In general these R-matrices obey the so-called ‘simple modified tetrahedron
equation’ which has recently been investigated in [9]. The modified tetrahedron equation
(MTE) allows us to obtain the ordinary tetrahedron equation for composite weights or vertices.
In the IRC formulation this has been shown in [10, 11], while the most simple vertex case was
considered in [12].

In this paper we shall introduce a new convenient theta-function parametrization of general
R operators. This parametrization will allow us to define fused weights R, which are partition
functions of open cubes of size M3, and which obey a MTE. In special cases the R solve an
ordinary tetrahedron equation.

The vertex matrix R ∈ End
(
C

3NM2)
is parametrized in terms of Nth roots of theta

functions on the Jacobian of a genus g = (M − 1)2 compact algebraic curve �g . The divisors
of three meromorphic functions on �g play the role of the spectral parameters for R. An
additional parameter of R is an arbitrary v ∈ Jac(�g). The tetrahedron equation for R holds
due to M4 simple modified tetrahedron equations. In the case when M = 1 and therefore
�g = S2, the solution of the simple tetrahedron equation of [5] is reproduced.

This paper is organized as follows. In section 1 we recall the vertex formulation of the
3D integrable ZBB model and sketch the derivation of the matrix operator Rijk from a current
conservation principle and Z-invariance. It satisfies the MTE and can be parametrized by
quadrangle line sections. In section 2 we introduce the parametrization of Rijk in terms of
theta functions. The Fermat relation and the Hirota equations are written as Fay identities. In
section 3 we show that a theta-function parametrization allows a compact formulation of the
fusion of many Rijk to the Boltzmann weight R of a whole open cube which satisfies a MTE.
In section 4 we first consider the special case of vanishing Jacobi transforms, in which R

satisfies a simple TE, then we discuss the rational case and the relation to chessboard models.
Finally, section 5 summarizes our conclusions.

1. The R-matrix and its parametrization

In this first section we give a short summary of basic previous results which also serves to fix
the notation.

1.1. The R-matrix of the vertex ZBB model

We start recalling the vertex formulation of the ZBB model [5]. We consider a three-
dimensional lattice with the elementary cell defined by three non-coplanar vectors e1, e2, e3
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and general vertices

n = n1e1 + n2e2 + n3e3 n1, n2, n3 ∈ Z. (1)

We label the directed link along ej starting from n by (j, n). On these links there are spin
variables σj,n which take values in ZN . The partition function is defined by

Z =
∑
{σ }

∏
n

〈
σ1,n, σ2,n+e2 , σ3,n

∣∣R∣∣σ1,n+e1 , σ2,n, σ3,n+e3

〉
(2)

where R is an operator (which in the ZBB model is independent of n) mapping the initial three
spin variables to the three final ones, so that

R
σ ′

1,σ
′
2,σ

′
3

σ1,σ2,σ3 ≡ 〈σ1, σ2, σ3|R|σ ′
1, σ

′
2, σ

′
3〉 (3)

is a N3 × N3 matrix.
For the vertex ZBB model, (3) can be expressed as a kind of cross-ratio of four cyclic

functions Wp(n). Introduce a two component vector p = (x, y) which is restricted to the
Fermat curve

xN + yN = 1. (4)

Then define the function Wp(n) by

Wp(0) = 1 Wp(n) =
n∏

ν=1

y

1 − qνx
for n > 0 (5)

where

q = e2π i/N (6)

is the primitive Nth root of unity. Because of the Fermat curve restriction, Wp(n) is cyclic
in n:

Wp(n + N) = Wp(n).

Now R = R(p1, p2, p3, p4) is defined by the following matrix function depending on four
Fermat points p1, p2, p3, p4:

R
σ ′

1,σ
′
2,σ

′
3

σ1,σ2,σ3

def= δσ2+σ3,σ
′
2+σ ′

3
q(σ ′

1−σ1)σ
′
3
Wp1(σ2 − σ1)Wp2(σ

′
2 − σ ′

1)

Wp3(σ
′
2 − σ1)Wp4(σ2 − σ ′

1)
(7)

where x-coordinates of four Fermat curve points in (7) are identically related by

x1x2 = qx3x4. (8)

So the matrix elements R
σ ′

1,σ
′
2,σ

′
3

σ1,σ2,σ3 depend on three complex numbers. These correspond to
Zamolodchikov’s spherical angles in the IRC formulation of the ZBB model [5]. The structure
of the indices of the matrix (7) allows one to consider R as the operator acting in the tensor
product of three vector spaces

V = C
N R ∈ End (V ⊗ V ⊗ V). (9)

It is conventional to enumerate naturally the components of the tensor product of several vector
spaces, so that (7) are the matrix elements of R = R123. Of course, R123 acts trivially on all
other vector spaces if one considers V⊗� for some arbitrary �.

Equation (7) is known as the R-matrix of the Zamolodchikov–Bazhanov–Baxter model,
see [5]. The proof that (7) satisfies the tetrahedron equation∑
j1,...,j6

R
j1j2j3
i1i2i3

(p(1))R
k1j4j5
j1i4i5

(p(2))R
k2k4j6
j2j4i6

(p(3))R
k3k5k6
j3j5j6

(p(4))

=
∑

j1,...,j6

R
j3j5j6
i3i5i6

(p(4))R
j2j4k6
i2i4j6

(p(3))R
j1k4k5
i1j4j5

(p(2))R
k1k2k3
j1j2j3

(p(1)) (10)

is rather tedious [5]. In (10) the arguments p(j) (j = 1, . . . , 4) stand for four Fermat curve
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w1

w3

w2

w′
1

w′
2

w′
3

A

Figure 1. The six links of the basic lattice intersecting in the vertex A, intersected by auxiliary
planes (shaded) in two different positions: the first passing through w1,w2, w3 and the second
through w′

1, w
′
2, w

′
3. The second position is obtained from the first by moving the auxiliary plane

parallel through the vertex A. The Weyl variables, elements of wi , w
′
i , live on the links of the

basic lattice. R maps the left auxiliary triangle onto the upper right one.

� �

�

��

�

Z Z

Y Y

X X
w1 w′

3

w3 w′
1

w2 w′
2

c1 c1

c3 c3

b1 d1

d3
b3

c2 c′2
d′

2
b2

d2 b′2

d1 b1

d3b3

R1 2 3−→

Figure 2. The canonical invertible mapping R123 shown in the auxiliary planes passing through the
incoming (left) and outgoing (right) dynamic variables which are elements of wi , respectively w′

i .
The directed lines X, Y, Z are the intersections of the three planes forming the vertex A of figure 1.
Their sections are labelled by the line-section parameters b1, . . . , d3. Note that the choice of the
orientation of the lines is not unique. The orientation chosen here corresponds to the numbering
(44) and (45) of the fused vertex considered in section 3.

points
(
p

(j)

1 , p
(j)

2 , p
(j)

3 , p
(j)

4

)
each. These 16 points depend on five independent parameters

expressed in terms of spherical angles, see [5]. Note that here on the left- and right-hand sides
the same p(j) appear. This will not be the case in the generalizations which will be discussed
soon.

Baxter and Forrester [19] have studied whether this model describes phase transitions.
They used variational and numerical methods and found strong evidence that for the parameter
values for which (10) is satisfied, the ZBB model is just at criticality [19]. So, in order to
get a chance to describe phase transitions while staying integrable (recall that this is also a
problem for the 2D Potts model), one should enlarge the framework and define more general
Boltzmann weights and introduce less restrictive tetrahedron equations. Less restrictive and
still powerful generalized equations can be used, as shown by Mangazeev and Stroganov [10]:
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they introduced modified tetrahedron equations which guarantee commuting layer-to-layer
transfer matrices. Further work along this line has been done in [11, 12].

1.2. R-matrix satisfying the modified tetrahedron equation

Since in the above-mentioned work [5] the proof that particular Boltzmann weights satisfy
a particular MTE has been rather tedious, here we shall follow the approach introduced in
[21] in which there is no need for an explicit check of the MTE. The Boltzmann weights
are constructed from ‘physical’ principles which guarantee the validity of the MTE and
nevertheless leave much freedom to obtain a broad class of integrable 3D models. We give a
short summary of the argument.

One starts with an oriented 3D basic lattice. The dynamic variables living on the links
i of this lattice are taken to be elements ui, wi ∈ wi an ultralocal Weyl algebra w = ⊗

wi

at the primitive Nth root of unity: uiwj = qδij wjui (q as in equation (6)), which generalize
the ZN -spin variables of (2) and (3). The Weyl elements are represented by standard N × N

raising respectively diagonal matrices. The Nth powers of the Weyl variables are centres of
the algebra and so are scalar variables.

The main object constructed is an invertible canonical mapping Rijk in the space of
a triple Weyl algebra. Rijk operates at the vertices of the 3D lattice, mapping the three
Weyl elements on the ‘incoming’ links onto those on the ‘outgoing’ links, see figure 1. The
construction of Rijk is based on two postulates, a Kirchhoff-like current conservation and a
Baxter Z-invariance, and gives a unique explicit result: a canonical and invertible rational
mapping operator. Since q is a root of unity, Rijk decomposes into a matrix conjugation Rijk ,
and a purely functional mapping R(f )

ijk which acts on the scalar parameters (the Weyl centres).
So, for any rational function � on w:

R123 ◦ � = R123
(
R(f )

123 ◦ �
)
R−1

123. (11)

It turns out that the matrix Rijk has the form (7) where the four Fermat curve parameters, again
constrained by (8), are rational functions of the scalar Weyl centre parameters.

Next consider an auxiliary plane which cuts the three incoming links near a vertex, and
a second auxiliary plane cutting through the outgoing links, see figure 1. We take the six
Weyl dynamic variables to sit on the six intersection points of the auxiliary planes. R123 can
be regarded as the mapping of the ingoing auxiliary plane to the parallel shifted outgoing
auxiliary plane.

Now consider the vertices of the basic lattice to be formed as the intersection points of
three sets of non-parallel planes. The three planes which form the vertex A of figure 1 intersect
the auxiliary planes in the lines X, Y, Z shown in figure 2. In figure 1 these intersection lines
are the sides of the shaded triangles. Seen from the moving auxiliary plane, R123 shifts the
line X through the vertex with index 1 or Y through the vertex 2 etc. We attach variables
b1, b2, . . . , d3 to each section of the lines X, Y, Z as shown in figure 2.

It is convenient to parametrize the two scalar variables associated with the incoming
dynamic Weyl variable w1 (corresponding to uN

1 and wN
1 in the usual notation) by the ratios

cN
2

/
cN

3 and dN
3

/
dN

2 . Analogously, e.g., those for w′
2 are defined as bN

1

/
b′N

2 and d ′N
2

/
dN

1 etc.
Details of the rule to parametrize the scalar variables in terms of ‘line-section’ variables
b1, . . . , d3 etc are explained in [9]. However, these will not be essential here, since one of the
aims of this paper is to introduce and use another parametrization. Observe in figure 2 that
R(f )

123 changes only three of the line-section parameters: b2, c2, d2. From the explicit form of
the canonical operator R123 (see [9]) one finds that the functional mapping R(f ) is rational in
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the Nth powers of the line sections:

b′N
2 = bN

1 cN
3 dN

2 + bN
2 cN

3 dN
3 + κN

1 bN
3 cN

2 dN
3

cN
2 dN

2

c′N
2 = κN

1 bN
3 cN

1 dN
2 + κN

3 bN
2 cN

3 dN
1 + κN

1 κN
3 bN

3 cN
2 dN

1

κN
2 bN

2 dN
2

d ′N
2 = bN

2 cN
1 dN

3 + bN
1 cN

1 dN
2 + κN

3 bN
1 cN

2 dN
1

bN
2 cN

2

.

(12)

Here κ1, κ2, κ3 are fixed parameters (‘coupling constants’) of the mapping R123. One can show
[9] that in the line-section parametrization the three independent Fermat curve parameters
which determine R123 according to (7) and (8) are

x1 = b2c3

κ1b3c2
x2 = κ2b1c

′
2

b′
2c1

x3 = b1c3√
qb′

2c2
. (13)

If we define a partition function in analogy to (2), the matrix elements of Rijk take the role
of generalized (because generically they will be complex) Boltzmann weights of integrable
3D lattice models of statistical mechanics. Despite their non-positivity we shall just call these
matrix elements ‘Boltzmann weights’.

Via the physical assumptions made in constructing Rijk, the validity of the TE is already
built in. Simply considering two different sequences of Z-invariance shifts in a geometric
figure formed by four intersecting straight lines (‘quadrangle’), one concludes that (see, e.g.,
[9])

R123 · R145 · R246 · R356 ∼ R356 · R246 · R145 · R123 (14)

i.e.Rijk satisfies the tetrahedron equation. Inserting (11) into (14) and choosing various phases
of Nth roots (the Fermat points (13) involve b1, . . . , whereas the (12) relate bN

1 , . . .) leads to
the MTE for the matrix operator Rijk:

R123 · (
R(f )

123 ◦ R145
) · (

R(f )

123R
(f )

145 ◦ R246
) · (

R(f )

123R
(f )

145R
(f )

246 ◦ R356
)

∼ R356 · (
R(f )

356 ◦ R246
) · (

R(f )

356R
(f )

246 ◦ R145
) · (

R(f )

356R
(f )

246R
(f )

145 ◦ R123
)
. (15)

Via the Fermat points each Rijk depends on several scalar variables, see, e.g., (13). In (15)
the scalar variables which appear in the matrices Rijk are to be transformed by the functional
transformations R(f )

ijk as indicated. Let us write shorthand

R(1) = R123 R(2) = R(f )

123 ◦ R145 R(3) = R(f )

123R
(f )

145 ◦ R246

R(4) = R(f )

123R
(f )

145R
(f )

246 ◦ R356 R(5) = R(f )

356R
(f )

246R
(f )

145 ◦ R123

R(6) = R(f )

356R
(f )

246 ◦ R145 R(7) = R(f )

356 ◦ R246 R(8) = R356.

(16)

Then the MTE (15) can be written compactly as

R(1)R(2)R(3)R(4) = ρR(8)R(7)R(6)R(5) (17)

where each R(j) acts non-trivially in only three of the six spaces V = C
N . ρ is a scalar density

factor which appears when passing from mappings to matrix equations.
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The parameters which determine the R(j) are the corresponding Fermat curve coordinates.
Taking into account the functional transformations in (16) in terms of the line-section
parameters one finds (for full details see [9]): R(j) = R

(
x

(j)

1 , x
(j)

2 , x
(j)

3

)
with




x
(1)
1 x

(1)
2 x

(1)
3

x
(2)
1 x

(2)
2 x

(2)
3

...
...

...

x
(7)
1 x

(7)
2 x

(7)
3

x
(8)
1 x

(8)
2 x

(8)
3




= q−1/2




b2c3
κ1b3c2

κ2b1c
′
2

b′
2c1

b1c3
q1/2b′

2c2

a2c
′
2

κ1a3c1

κ4a1c
′′
1

a′′
2 c0

a1c
′
2

q1/2a′′
2 c1

...
...

...

a2b3
κ2a3b2

κ4a
†
1b

††
2

a
††
2 b

†
1

a
†
1b3

q1/2a
††
2 b2

a1b2
κ3a2b1

κ5a0b
†
1

b0a
†
1

a0b2

q1/2a
†
1b1




. (18)

The once or multiply transformed parameters such as c′′
1, b

†
1 follow from the iteration of

equations such as (12). Altogether, since there are eight matrices R(j) appearing in the MTEs,
and as seen in figure 2, each transformation changes three line-section parameters, we have
24 equations for 32 different line-section parameters (these parameters can be seen in table 1).
These form a set of classical integrable equations which are conveniently written in Hirota
form:

b′N
2 cN

2 dN
2 = bN

1 cN
3 dN

2 + bN
2 cN

3 dN
3 + κN

1 bN
3 cN

2 dN
3

κN
2 bN

2 c′N
2 dN

2 = κN
1 bN

3 cN
1 dN

2 + κN
3 bN

2 cN
3 dN

1 + κN
1 κN

3 bN
3 cN

2 dN
1

bN
2 cN

2 d ′N
2 = bN

2 cN
1 dN

3 + bN
1 cN

1 dN
2 + κN

3 bN
1 cN

2 dN
1

a′′N
2 cN

1 dN
1 = aN

1 c′N
2 dN

1 + aN
2 c′N

2 d ′N
2 + κN

1 aN
3 cN

1 d ′N
2

κN
4 aN

2 c′′N
1 dN

1 = κN
1 aN

3 cN
0 dN

1 + κN
5 aN

2 c′N
2 dN

0 + κN
1 κN

5 aN
3 cN

1 dN
0

aN
2 cN

1 d ′′N
1 = aN

2 cN
0 d ′N

2 + aN
1 cN

0 dN
1 + κN

5 aN
1 cN

1 dN
0

a′′′N
1 bN

1 d ′N
2 = aN

0 b′N
2 d ′N

2 + dN
3 aN

1 b′N
2 + κN

2 dN
3 bN

1 a′′N
2

κN
4 aN

1 b′′′N
1 d ′N

2 = κN
2 bN

0 a′′N
2 d ′N

2 + κN
6 aN

1 b′N
2 d ′′N

1 + κN
2 κN

6 a′′N
2 bN

1 d ′′N
1 (19)

aN
1 bN

1 d ′′′N
2 = bN

0 dN
3 aN

1 + aN
0 bN

0 d ′N
2 + κN

6 aN
0 bN

1 d ′′N
1

a
††
2

N
b′N

2 c′N
2 = bN

3 a′′′N
1 c′N

2 + bN
3 cN

3 a′′N
2 + κN

3 aN
3 cN

3 b′N
2

κN
5 a′′N

2 b
††
2

N
c′N

2 = κN
3 aN

3 b′′′N
1 c′N

2 + κN
6 bN

3 a′′N
2 c′′N

1 + κN
3 κN

6 aN
3 b′N

2 c′′N
1

a′′N
2 b′N

2 c
†††N
2 = cN

3 a′′N
2 b′′′N

1 + a′′′N
1 b′′′N

1 c′N
2 + κN

6 a′′′N
1 b′N

2 c′′N
1

...
...

b′′′N
1 c

†N
1 d

††N
1 = bN

0 c
†††N
2 d

††N
1 + b

†N
1 c

†††N
2 d

†††N
2 + κN

1 b
††N
2 c

†N
1 d

†††N
2

κN
2 b

†N
1 c′′N

1 d
††N
1 = κN

1 cN
0 b

††N
2 d

††N
1 + κN

3 dN
0 b

†N
1 c

†††N
2 + κN

1 κN
3 dN

0 b
††N
2 c

†N
1

b
†N
1 c

†N
1 d ′′N

1 = cN
0 b

†N
1 d

†††N
2 + bN

0 cN
0 d

††N
1 + κN

3 bN
0 dN

0 c
†N
1 .

The first three of these equations are just (12), defining R(f )

123, i.e. b′N
2 , c′N

2 , d ′N
2 , in terms of the

unprimed b1, . . . , d3. The first six equations together (e.g., expressed in the fourth equation
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on the right-hand side c′N
2 and d ′N

2 from the first and third equations) define R(f )

123 ◦ R(f )

145, etc.
The complete expressions for (18) and (19) can be found in [9].

Straightforward combination of the first 12 equations of (19) on one hand, and of the last
12 equations of (19) on the other hand (best done, e.g., by Maple), shows that the functional
mappings given in (19) automatically satisfy the functional TE:

R(f )

123 · R(f )

145 · R(f )

246 · R(f )

356 = R(f )

356 · R(f )

246 · R(f )

145 · R(f )

123 (20)

where for the superposition of two operators acting on a function � we use the notation

((A · B) · �)
def= (A · (B · �)). Of course, the validity of (20) is a consequence of the

physical rules used when constructing Rijk . In the line-section parametrization the relation
between the first, second etc lines in both (18) and (19) is not transparent. Introducing a new
parametrization in the next subsection will make these relations simple and explicit.

2. Parametrization using concepts of algebraic geometry

2.1. Theta functions

It is well known [14–18] that Hirota-type equations can be identically satisfied by a
parametrization in terms of theta functions on an algebraic curve. We shall now introduce
such a parametrization in order to write (18) and (19) in a more systematic way. This will
be also useful later to formulate fusion in a transparent manner. For the notation of algebraic
geometry see, e.g., [13].

Let �g be an abstract generic algebraic curve of the genus g with ω being the canonical
g-dimensional vector of the homomorphic differentials. For any two points X, Y ∈ �g let
IX
Y : �2

g 
→ Jac(�g) be

IX
Y

def=
∫ X

Y

ω. (21)

Let further E(X, Y ) = −E(Y,X) be the prime form on �2
g , and 
(v) be the theta function on

Jac(�g).
It is well known that the theta functions on the Jacobian of an algebraic curve obey the

Fay identity


(v)

(
v + IA

B + IC
D

) = 

(
v + IA

D

)



(
v + IC

B

)E(A,B)E(D,C)

E(A,C)E(D,B)

+ 

(
v + IA

B

)



(
v + IC

D

)E(A,D)E(C,B)

E(A,C)E(D,B)
(22)

which involves four points A,B,C,D ∈ �g and a v ∈ Jac(�g). We shall show that in
the parametrization to be introduced below, the Fermat relations become just Fay identities.
The Fay identity involves only cross-ratios of prime forms, and these ratios have a simple
expression in terms of non-singular odd characteristic theta functions:

[
X X′

Y Y ′

]
def= E(X, Y )E(X′, Y ′)

E(X, Y ′)E(X′, Y )
= 
εodd

(
IY
X

)

εodd

(
IY ′
X′

)

εodd

(
IY ′
X

)

εodd

(
IY
X′

) . (23)

For solving the 24 trilinear equations (19) we shall need an identity with more arguments
Q,X, Y, Y ′, Z,Z′ ∈ �g obtained by combining two Fay identities:
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(
v + IQ

X

)



(
v + IQ

Y + IZ′
Z

)



(
v + IQ

Z + IY ′
Y

)

−

(
v + IQ

X + IZ′
Z

)



(
v + IQ

Y

)



(
v + IQ

Z + IY ′
Y

) [
X Y

Z Z′

]

−

(
v + IQ

X + IY ′
Y

)



(
v + IQ

Y + IZ′
Z

)



(
v + IQ

Z

) [
X Z

Y Y ′

]

+ 

(
v + IQ

X + IY ′
Y + IZ′

Z

)



(
v + IQ

Y

)



(
v + IQ

Z

) [
X Y

Z Z′

] [
X Z′

Y Y ′

]
= 0. (24)

Furthermore, since we will need the Nth roots of theta functions and prime forms, we also
define e(X, Y ) and θ(v) by

e(X, Y )N = 
εodd

(
IX
Y

) ∼ E(X, Y ) θ(v)N = 
(v). (25)

Since in the following we shall have to write many equations involving theta functions, it is
convenient to introduce special abbreviations. For Q,A,B1, B

′
1, . . . ∈ �g we define:

(A,B1 + B2 + · · · + Bn) ≡ 



v + IQ

A +
n∑

j=1

IBj
′

Bj


 〈A,B〉 ≡ E(A,B)

[A,B1 + B2 + · · · + Bn] ≡ θ


v + IQ

A +
n∑

j=1

IBj
′

Bj




{A,B} ≡ −q−1/2e(A,B ′)/e(A,B) {A,B} ≡ −e(A′, B)/e(A,B).

(26)

Note that the brackets ( , ) and [ , ] introduced here do not show explicitly the dependence on
the variables v,Q,B ′

1, . . . , B
′
n since these always come in the same form. We also introduce,

using this notation:

F(v;X, Y ′, Y, Z′, Z)
def= (X)(Y, Z)(Z, Y )〈Y,Z〉〈X,Z′〉〈X, Y ′〉

− (X,Z)(Y )(Z, Y )〈X,Z〉〈Y,Z′〉〈X, Y ′〉
− (X, Y )(Y, Z)(Z)〈X, Y 〉〈Y ′, Z〉〈X,Z′〉
+ (X, Y + Z)(Y )(Z)〈X,Z〉〈X, Y 〉〈Y ′, Z′〉 (27)

so that the double-Fay identity (24) is

F(v;X, Y ′, Y, Z′, Z) = 0. (28)

The dependence on Q is trivial since it appears only in the combination v + IQ
.... So Q is not an

independent variable.

2.2. Re-parametrization of R

Let us introduce the new parametrization of the matrix (7). As we illustrated in figure 2, in
the auxiliary plane the mapping R123 can be considered as a relative shift of three directed
lines X, Y, Z with respect to each other. Now, for the given algebraic curve �g and v ∈ Cg , we
introduce three pairs of points on �g:

X′, X, Y ′, Y, Z′, Z ∈ �g. (29)

Another point Q ∈ �g will just serve as a trivial normalization. Then let

R = R(p1, p2, p3, p4) ⇐⇒ R = R(v;X′, X;Y ′, Y ;Z′, Z) (30)
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with, using the shorthand notations (26) and pj = (xj , yj ),

x1 =1

q

{X,Z}
{Y ′, Z}

[X, Y ][Y,Z]

[X, Y + Z][Y ]
y1 = e(Z,Z′)e(X, Y ′)

e(X,Z)e(Y ′, Z′)
[Z, Y ]θ

(
v + IQ

Y + IZ′
X

)
[X, Y + Z][Y ]

x2 ={X′, Z}
{Y,Z}

[X][Y,X + Z]

[X,Z][Y,X]
y2 = q

e(Z,Z′)e(X′, Y )

e(X′, Z)e(Y, Z′)
[Z,X]θ

(
v + IQ

Y + IZ′
X

)
[X,Z][Y,X]

x3 =1

q

{X,Z}
{Y,Z}

[X][Y,Z]

[X,Z][Y ]
y3 = q

e(Z,Z′)e(X, Y )

e(X,Z)e(Y, Z′)
[Z]θ

(
v + IQ

Y + IZ′
X

)
[X,Z][Y ]

x4 =1

q

{X′, Z}
{Y ′, Z}

[X, Y ][Y,X + Z]

[X, Y + Z][Y,X]
y4 = e(Z,Z′)e(X′, Y ′)

e(X′, Z)e(Y ′, Z′)
[Z,X+Y ]θ

(
v + IQ

Y + IZ′
X

)
[X, Y +Z][Y,X]

.

(31)

Actually, see (5), for defining R123 we do not need the yi themselves but only the ratios

y3

y1
= q

{Y,Z′}
{X, Y }

[Z][X, Y + Z]

[X,Z][Z, Y ]

y4

y1
= {X, Y ′}

{X,Z}
[Z,X + Y ][Y ]

[Z, Y ][Y,X]

y3

y2
= {X,Z}

{X, Y }
[Z][Y,X]

[Y ][Z,X]

(32)

from which e(Z,Z′) and θ
(
v + IQ

Y + IZ′
X

)
drop out.

Note that for this parametrization we used a generic algebraic curve and generic points on
this curve, and a generic point on its Jacobian, all in order to parametrize just three independent
complex numbers x1, x2, x3. In (31) all xk, yk are the periodical functions of v ∈ Jac(�g).

The parametrization (31) is suggested by a few assumptions: first, the prime forms shall
appear in the xi only in the form of Nth roots of (23):

{X,Z}
{Y,Z} =

[
X Y

Z Z′

]1/N

. (33)

Second, considering (13), we demand that the line-section parameters b1, b2, b3, b
′
2 (sections

of the line X in figure 2) should be proportional to Nth roots of theta functions of the form
[X, . . .] defined in (26). Analogously, the sections c1, . . . , c

′
2 of the line Y are assumed to be

proportional to [Y, . . .]. Finally, we consider that we want to use Fay identities to provide the
Fermat relations and the Hirota equations.

The merit of this parametrization will be seen in several places: when we consider the
transformed mappings R(2), . . . , R(6), when we re-write equations (19) and when we construct
composite weights in section 3.

We must now verify that (31), and its generalization to the other Fermat points in the
MTE, give a consistent parametrization of the relevant equations (4), (18) and (19). We first
check that (31) satisfies the Fermat relations

xN
j + yN

j = 1. (34)

Indeed, these are true due to the Fay identity, which for A,B,C,D ∈ �g we write as

−〈A,C〉〈D,B〉
(v)

(
v + IA

B + IC
D

)
+ 〈A,B〉〈D,C〉
(

v + IA
D

)



(
v + IC

B

)
+ 〈A,D〉〈C,B〉
(

v + IA
B

)



(
v + IC

D

) = 0. (35)

For j = 1 put in (35) (A,B,C,D) → (Y ′, X,Z′, Z) and v → v′ = v + IQ
Y , giving

〈Z,X〉〈Y ′, Z′〉(Y )(X, Y + Z) − 〈Z,Z′〉〈Y ′, X〉(Z, Y )

(
v′ + IZ′

X

)
−〈Z′, X〉〈Y ′, Z〉(X, Y )(Y, Z) = 0



Fusion for 3D integrable Boltzmann weights 1169

U

X
Y

Z

1

2

3 4

5

6

Figure 3. Quadrangle in the auxiliary plane formed by the directed intersection lines of four
oriented lattice planes. The six spaces V in which the MTE operates are considered to be located
at the six intersection points.

for j = 2 put in (35) (A,B,C,D) → (X′, Y, Z′, Z) and v → v′′ = v + IQ
X , giving

〈Z′, Y 〉〈X′, Z〉(Y,X)(X,Z) − 〈Z, Y 〉〈X′, Z′〉(X)(Y,X + Z)

+ 〈Z,Z′〉〈X′, Y 〉(Z,X)

(
v′′ + IZ′

Y

) = 0

for j = 3 put in (35) (A,B,C,D) → (Z,X,Z′, Y ) and v → v+ = v + IQ
Z :

〈X,Z′〉〈Y,Z〉(X)(Y, Z) − 〈X,Z〉〈Y,Z′〉(Y )(X,Z)

+ 〈Z,Z′〉〈X, Y 〉(Z)

(
v + IQ

Y + IZ′
X

) = 0

or 〈X,Z′〉〈Y,Z〉
(
v+ + IZ

X

)



(
v+ + IZ′

Y

) − 〈X,Z〉〈Y,Z′〉
(
v+ + IZ

Y

)



(
v+ + IZ′

X

)
+ 〈Z,Z′〉〈X, Y 〉
(v+)


(
v+ + IZ

X + IZ′
Y

) = 0.

For j = 4 put in (35) (A,B,C,D) → (Y ′, Z,X′, Z′), v → v∗ = v + IQ
X + IZ′

Y .

2.3. Line-section parameters and Hirota equations in terms of theta functions

For writing the MTE in our new parametrization and to check (18) and (19), we consider three
more spaces V = C

N, corresponding to the indices 4, 5, 6. In figure 2 the first three spaces
were located at the intersection points of the lines X, Y, Z. To include the other three spaces,
consider the ‘quadrangle’ formed by four lines shown in figure 3. Corresponding to the new
line U we introduce another pair of points U ′, U ∈ �g.

Looking at figure 3 we see that, instead of labelling the spaces by the vertices 1, . . . , 6 of
the quadrangle, we can also label them by the pair of lines which intersect in these vertices,
so identifying

1 ∼ YZ 2 ∼ XZ 3 ∼ XY 4 ∼ UZ 5 ∼ UY 6 ∼ UX. (36)

Note that the ordering of the lines is important for the identification (36): we shall choose the
anti-clockwise orientation in figure 3, not the mirror reflected clockwise orientation.

Next we assume that we can write the ‘coupling constants’ κj all in the form (33). Then
from (36) it is suggested to build, e.g., κ1 from the points Y ′, Y, Z′, Z only, etc and put (factors
q1/2 are inserted to produce correct signs when forming Nth powers for (19)):

κ1 = q1/2 {Y ′, Z}
{Y,Z} κ2 = q1/2 {X′, Z}

{X,Z} κ3 = q1/2 {X′, Y }
{X, Y }

κ4 = q1/2 {U ′, Z}
{U,Z} κ5 = q1/2 {U ′, Y }

{U, Y } κ6 = q1/2 {U ′, X}
{U,X} .

(37)
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Table 1. The 32 line-section parameters appearing in equations (19), expressed in terms of theta
functions and prime factor ratios, using the abbreviations (26). Observe that in the prime factor
brackets { , } the points come always in the order U,X, Y, Z (without and with primes).

a0 = [U ]{U,X}{U, Y }{U,Z} b1 = [X]{X, Y}{X,Z}{U,X}
a1 = [U,X]{U, Y }{U,Z} b2 = [X, Y ]{X,Z}{U,X}
a
†
1 = [U, Y ]{U,Z}{U,X} b′

2 = [X, Z]{X,Y }{U,X}
a′′′

1 = a
†††
1 = [U,Z]{U,X}{U, Y } b0 = [X, U ]{X, Y }{X,Z}

a2 = [U,X + Y ]{U,Z} b3 = [X, Y + Z]{U,X}
a
††
2 = aT

2 = [U, Y + Z]{U,X} b′′′
1 = bt

1 = [X,U + Z]{X, Y }
a′′

2 = [U,X + Z]{U, Y } b
†
1 = [X, U + Y ]{X,Z}

a3 = [U,X + Y + Z] b
††
2 = bT

2 = [X, U + Y + Z]

c2 = [Y ]{Y, Z}{U, Y }{X, Y } d3 = [Z]{U,Z}{X,Z}{Y,Z}
c
†
1 = [Y, U ]{Y,Z}{X, Y } d ′′′

2 = d
†††
2 = [Z,U ]{X,Z}{Y,Z}

c3 = [Y, Z]{U, Y }{X, Y } d ′
2 = [Z, X]{Y,Z}{U,Z}

c1 = [Y, X]{Y,Z}{U, Y } d2 = [Z, Y ]{U,Z}{X,Z}
c0 = [Y, U + X]{Y,Z} d ′′

1 = dt
1 = [Z, U + X]{Y,Z}

c
†††
2 = cT

2 = [Y,Z + U ]{X, Y } d1 = [Z, X + Y ]{U,Z}
c′

2 = [Y, X + Z]{U, Y } d
††
1 = [Z,U + Y ]{X,Z}

c′′
1 = ct

1 = [Y, Z + U + X] d0 = [Z, U + X + Y ]

Now we consider (31) and (37) and assume that the line-section parameters a0, a1, . . .

and d0, d1, . . . follow the same scheme as postulated for b0, . . . , c0, . . . above after (33):
ai ∼ [U, . . .], di ∼ [Z, . . .]. So equations (18) lead us to express all line-section parameters in
terms of theta functions as shown in table 1. We make ample use of the short-hand notation (26).

Apart from Q which always comes with v, we use eight arbitrary points X′, X, Y ′,
Y, Z′, Z,U ′, U ∈ �g . The κj may also be written in terms of the bare brackets using
{A,B ′}{A,B} = {A,B}{A′, B}. From table 1 we see that the ai do not depend on U ′, the bi

do not depend on X′ etc.
Now, using the results of table 1 and (37), we shall re-write all the Hirota equations

(19) in terms of theta functions on �g and prime form cross-ratios. Not very surprisingly
in view of [14, 17, 18], it turns out that all these have the form of the double-Fay identity.
Also, as expected from figure 3, and the meaning of the mappings as moving lines within the
quadrangle, the 24 equations follow from each other by a sequence of simple substitutions.
Inserting from table 1 and (37), the first three equations of (19) become, using the notation
(27) (recall that these are equations (12) defining the functional mapping R(f )

123):

F(v;X, Y ′, Y, Z′, Z)
({U,X}{U, Y }{U,Z}{X, Y }{X,Z})N

E(X, Y )E(X,Z)E(Y,Z)
= 0

F(v + IY ′
Y ;Y ′, X′, X,Z′, Z)

({U,X}{U, Y }{U,Z})N
E(X,Z)E(X, Y ′)E(Y ′, Z)

= 0

F(v;Z, Y ′, Y,X′, X)
({U,X}{U, Y }{U,Z}{X,Z}{Y,Z})N

E(X, Y )E(X,Z)E(Y,Z)
= 0.

(38)

The dependence on U ′, U appears only in the factors on the right, not in the F. Assuming
generic points U ′, U, . . . we conclude that the F must vanish and we combine the essential
terms of (38) into

F(v;X′, X, Y ′, Y, Z′, Z)
def=


 F(v;X, Y ′, Y, Z′, Z)

F(v + IY ′
Y ;Y ′, X′, X,Z′, Z)

F(v;Z, Y ′, Y,X′, X)


. (39)
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Then the 24 Hirota equations (19) which describe the functional mappings take the form

F(v;X′, X, Y ′, Y, Z′, Z) = 0 F
(
v + IU ′

U ;X′, X, Y ′, Y, Z′, Z
) = 0

F
(
v + IX′

X ;U ′, U, Y ′, Y, Z′, Z
) = 0 F(v;U ′, U, Y ′, Y, Z′, Z) = 0

F(v;U ′, U,X′, X,Z′, Z) = 0 F
(
v + IY ′

Y ;U ′, U,X′, X,Z′, Z
) = 0

F
(
v + IZ′

Z ;U ′, U,X′, X, Y ′, Y
) = 0 F(v;U ′, U,X′, X, Y ′, Y ) = 0.

(40)

The equations in the left column of (40) precisely correspond to the first 12 equations of (19).
The last three equations of (19) are combined into the top equation of the right column of (40).
As already mentioned with (20), equations (40) together contain the functional TE.

2.4. Theta-parametrization of the simple modified tetrahedron equation

Finally, we use the parametrization (31) to re-write the MTE. From (17) with (18) we
find that the functional mapping just produces a permutation of the four pairs of points
X,X′, . . . , U,U ′ ∈ �g , together with shifts in the vector v. Of course, the result corresponds
to (40). Explicitly it is:

Theorem 1. The simple modified tetrahedron equation may be parametrized in terms of �g ,
v ∈ Jac(�g) and four pairs X′, X, Y ′, Y, Z′, Z,U ′, U ∈ �g by definitions (30), (31), (18) as
follows:

R(1) = R(v;X′, X;Y ′, Y ;Z′, Z) R(5) = R
(
v + IU ′

U ;X′, X;Y ′, Y ;Z′, Z
)

R(2) = R
(
v + IX′

X ;U ′, U ;Y ′, Y ;Z′, Z
)

R(6) = R(v;U ′, U ;Y ′, Y ;Z′, Z)

R(3) = R(v;U ′, U ;X′, X;Z′, Z) R(7) = R
(
v + IY ′

Y ;U ′, U ;X′, X;Z′, Z
)

R(4) = R
(
v + IZ′

Z ;U ′, U ;X′, X;Y ′, Y
)

R(8) = R(v;U ′, U ;X′, X;Y ′, Y ).

(41)

Proof. Each R(j) is determined by its three Fermat points x
(j)

1 , x
(j)

2 , x
(j)

3 . From [9] these
points are known in terms of the line-section parameters, see (18). Inserting the theta-function
expressions for the line sections from table 1 into (18) one finds that the x

(j)

i for j = 2, . . . , 8
are obtained from those for j = 1, equations (31), by the substitutions seen in (41). �

Using the correspondence between the labels 1, . . . , 6 and the line labels U, X, Y, Z, given
in (36), R(1) = R123 may also be labelled as RXYZ etc, and we write the MTE as

RXYZ(v)RUYZ
(
v + IX′

X

)
RUXZ(v)RUXY

(
v + IZ′

Z

)
= ρRUXY(v)RUXZ

(
v + IY ′

Y

)
RUYZ(v)RXYZ

(
v + IU ′

U

)
. (42)

This notation also indicates directly the three pairs of points on the algebraic curve which
parametrize the matrices R(j) in (41).

In [9] we showed that using simple re-scalings, out of the 24 line-section parameters listed
in table 1 and the six parameters κ1, . . . , κ6, only eight parameters are independent. Here
we have eight points on �g which can be chosen freely. In addition, 16 phases from taking
the Nth roots can be chosen freely. In terms of the line-section parameters, the choice of the
independent phases is the same as that explained in [9].

3. The fused vertex weight R

3.1. Open N1 × N2 × N3 box

The natural graphical interpretation of the R-matrix is a three-dimensional vertex, i.e. the
intersection of three planes in 3D space. The six indices σj , σ

′
j are associated with the edges

of the vertex, recall figure 1.
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n3=0

n3=1

n2=0 n2=1
n1=0 n1=1

(1,0,1)

(1,1,1)

(0,0,0)

(0,1,0)

(1,0,0)

(0,1,1)

Figure 4. Top: three-dimensional view of the oriented cube N1 = N2 = N3 = 2 (heavy lines)
which is formed by six planes (indicated by dashed lines). Bottom: the horizontal auxiliary plane
with the three pairs of lines arising from the intersection of the three pairs of planes with the
auxiliary plane. This is a generalization of figures 1 and 2: if we consider, e.g., the point (0, 1, 0)

to correspond to the point A of figure 1, then the inner triangle in the auxiliary plane corresponds to
the left shaded triangle of figure 1 and to the left part of figure 2. So the initial external spin (Weyl)
variables (44) can be considered to sit at the three times four intersection points of the auxiliary
plane. In order to get a similar picture for the final external variables we have to place the auxiliary
plane above the cube.

The next step is the consideration of the intersection of three sets of N1, N2 and N3

parallel planes. This produces a finite open cubic lattice of the size N1 ×N2 ×N3. We call the
corresponding vertex object R. It is the result of the fusion of elementary R-matrices.

The lattice is defined as in (1), but now nj = 0, . . . Nj − 1. Let R123 be the matrix
associated with the open cube (more precisely, the open parallelepiped):

R123 ≡ 〈�σ1, �σ2, �σ3|R|�σ ′
1, �σ ′

2, �σ ′
3〉 =

∑
{σ }

∏
n

〈
σ1,n, σ2,n+e2 , σ3,n

∣∣Rn
∣∣σ1,n+e1 , σ2,n, σ3,n+e3

〉
. (43)

Here the six external multi-spin variables (i.e. the indices of the matrix R123) are associated
with the six surfaces of the cube:

�σ1 = {
σ1:0,n2,n3

} �σ2 = {
σ2:n1,N2,n3

} �σ3 = {
σ3:n1,n2,0

}
nj = 0, . . . , Nj − 1 (44)

and

�σ ′
1 = {

σ1:N1,n2,n3

} �σ ′
2 = {

σ2:n1,0,n3

} �σ ′
3 = {

σ3:n1,n2,N3

}
nj = 0, . . . , Nj − 1

(45)

and the summation in (43) is taken with respect to all internal indices σj,n. Anticipating what
will be needed in (62) in order to prove that the fused weights satisfy a MTE of the same form
as we had in (42), we use a reversed numbering for σ2 and σ ′

2, so that the ‘initial’ external
indices are σ1 = 0, σ2 = N2, σ3 = 0. This reversed numbering in the second space is also
dictated by our choice of the line orientations in the lattice and, as a consequence of this, in
the auxiliary plane (see figure 4).
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n2 = 0 n2 = 2

Y ′, Y

n3 = 0 n3 = 2

Z ′, Z

n1 = 0

n1 = 2
X ′, X

V1

V3 V2

Figure 5. Ordering of the indices of the matrix R123, shown for the case N1 = N2 = N3 = 3 by
drawing the auxiliary triangle in the auxiliary plane, as in the bottom part of figure 4.

In our next step we want to parametrize all Rn in (43) such that the fused weight R

again satisfies a modified tetrahedron equation. We shall show that using a theta-function
parametrization this is possible and the Rijk obtained will depend on 6(N1 + N2 + N3) free
parameters.

We again use the generic algebraic curve �g , and one vector v ∈ C
g . As in (30) each Rn

will depend on three pairs of points on �g , and to each Rn we assign different three pairs:

X′
n1

, Xn1
, Y ′

n2
, Yn2

, Z′
n3

, Zn3
nj = 0, . . . , Nj − 1. (46)

However, the argument v will be shifted for each Rn by an amount In which depends on the
points assigned to ‘previous’ neighbours: We define

R(123)
n = R

(
v + In;X′

n1
, Xn1

;Y ′
n2

, Yn2
;Z′

n3
, Zn3

)
nj = 0, . . . , Nj − 1 (47)

where

In =
n1−1∑
m1=0

I
X′

m1
Xm1

+
n2−1∑
m2=0

I
Y ′

m2
Ym2

+
n3−1∑
m3=0

I
Z′

m3
Zm3

. (48)

Now (43) and (47) define the matrix function

R123(v) = R(v;X′, X;Y ′, Y ;Z′, Z) (49)

where X′, X, Y ′, Y, Z′, Z stand for the ordered lists of divisors,

X = (
X0, X1, . . . , XN1−1

)
X′ = (

X′
0, X

′
1, . . . , X

′
N1−1

)
Y = (Y0, Y1, . . .), etc.

(50)

As to the index structure, recall (9),

R123 ∈ End (VN2N3 ⊗ VN1N3 ⊗ VN1N2) (51)

where in the same way as before we enumerate the number of VNj Nk in the tensor product
(e.g., (43) are the matrix elements of R123). In figure 5 we show the intersection lines of the
planes of a N1 × N2 × N3 cube which appear in an auxiliary plane (as in the bottom part of
figure 4), which intersects the ‘initial’ edges corresponding to (44). On the section the
N1 + N2 + N3 planes become lines, and the edges of the cubic lattice become the intersection
points of N1N2 + N2N3 + N1N3 lines in the auxiliary plane. The intersection points are gathered
into three sets V1 = VN2N3 etc, and the index of Vj is the number of the corresponding VNkNl

in the tensor product in (51). Figure 5 helps arrange the numbering in (48) and the correct
assignment of X′

n1
, Xn1 , etc.



1174 G von Gehlen et al

3.2. The modified tetrahedron equation for the fused weights

For writing the MTE, apart from the three pairs of sets X′, X;Y ′, Y ;Z′, Z of (49) and (50)
we need a fourth pair

U = (
U0, U1, . . . , UN0−1

)
U ′ = (

U ′
0, U

′
1, . . . , U

′
N0−1

)
.

Applying definition (43), in addition to (49) we construct the matrices

R145(v) = R(v;U ′, U ;Y ′, Y ;Z′, Z)

R246(v) = R(v;U ′, U ;X′, X;Z′, Z)

R356(v) = R(v;U ′, U ;X′, X;Y ′, Y ).

Their index structure is defined by

V1 = VN2N3 V2 = VN3N1 V3 = VN1N2

V4 = VN0N3 V5 = VN0N2 V6 = VN0N1
(52)

so that, e.g., R145 is acting in a space of dimension NN2N3+N0N3+N0N2 . For R145 in analogy to
definitions (47) and (48) one uses

R(145)
n = R

(
v + In;U ′

n0
, Un0;Y ′

n2
, Yn2;Z′

n3
, Zn3

)
(53)

with

In =
n0−1∑
m0=0

I
U ′

m0
Um0

+
n2−1∑
m2=0

I
Y ′

m2
Ym2

+
n3−1∑
m3=0

I
Z′

m3
Zm3

(54)

similarly for R246 and R356.

Theorem 2. The matrices R defined in (43) obey the modified tetrahedron equation

R123(v)R145(v + IX)R246(v)R356(v + IZ)

= ρR356(v)R246(v + IY )R145(v)R123(v + IU)
(55)

where

IU =
N0−1∑
n0=0

I
U ′

n0
Un0

IX =
N1−1∑
n1=0

I
X′

n1
Xn1

IY =
N2−1∑
n2=0

I
Y ′

n2
Yn2

IZ =
N3−1∑
n3=0

I
Z′

n3
Zn3

.

(56)

Proof. The main content of this theorem is the appearance of the specific set of shifts (48) and
(56). For the proof it is convenient to introduce some compact notations. Instead of using the
number labels for the R we shall use the labels U, X, Y, Z just as these were introduced in (36)
and (42) for the single vertex matrices R. So, for the box R-matrix and its sets of divisors we
write,

R123(v) �⇒ RXYZ(v) R145(v) �⇒ RUYZ(v) etc. (57)

In this short notation, formulae (43) and (47) imply the definition

RXYZ(v) =
∏

n1=0↑N1−1

∏
n2=N2−1↓0

∏
n3=0↑N3−1

RXn1 Yn2 Zn3 (v + In) (58)

where we use ordered products∏
n1=0↑N1−1

fn1 = f0f1 · · · fN1−1

∏
n2=N2−1↓0

fn2 = fN2−1 · · · f1f0. (59)
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For the triple (X, Y,Z), In is given by (48). Each RXn1 Yn2 Zn3 acts non-trivially in only three of
all the spaces (52) and the ordering is relevant just for neighbouring indices Xn1 or Yn2 or Zn3 .
The analogous modifications required to get the other matrices R145, etc should be evident.

Now we turn to the proof of the theorem which will be by mathematical induction. The
theorem claims the validity of the MTE for arbitrary N0, N1, N2, N3. For the initial point
N0 = N1 = N2 = N3 = 1 the MTE holds because it is just (42). Then to prove the theorem,
we reduce the MTE (55) for some Nj to MTEs with N ′

j � Nj . Thus one has four similar
steps of the induction. Here we consider the induction step for the X-direction; the other steps
follow analogously.

We split the list X into two sublists of length N
(1)
1 and N

(2)
1 = N1 − N

(1)
1 :

X(1) = (
X0, X1, . . . , XN

(1)
1 −1

)
X(2) = (

X
N

(1)
1

, . . . , XN1−1
)

(60)

so that IX(1) = ∑N
(1)
1 −1

n1=0 IXn1
and IX(2) = IX − IX(1) . According to this splitting and due to

definition (58)

RXYZ(v) = RX(1)YZ(v)RX(2)YZ(v + IX(1) )

RUXZ(v) = RUX(2)Z(v + IX(1) )RUX(1)Z(v)

RUXY(v) = RUX(2)Y(v + IX(1) )RUX(1)Y(v).

(61)

The meaning of the notation X(1) and X(2) used in (61) should be evident from (58). Observe
that because of the reverse numbering with respect to the middle superscript of R in (58),
the factors in the latter two equations appear in reverse order. Since RUYZ(v) contains no X,
neither as subscript nor in the argument, it will not be split. However, we have to put

RUYZ(v + IX) = RUYZ(v + IX(1) + IX(2) ).

Now substituting (61) into the LHS of (55) written in our new superscript notation, and
abbreviating v1 ≡ v + IX(1) , we get

RXYZ(v)RUYZ(v + IX)RUXZ(v)RUXY(v + IZ)

= RX(1)YZ(v)RX(2)YZ(v + IX(1) )RUYZ(v + IX(1) + IX(2) )RUX(2)Z(v + IX(1) )

×RUX(1)Z(v)RUX(2)Y(v + IX(1) + IZ)RUX(1)Y(v + IZ)

= RX(1)YZ(v)
[
RX(2)YZ(v1)R

UYZ(v1 + IX(2) )RUX(2)Z(v1)R
UX(2)Y(v1 + IZ)

]
×RUX(1)Z(v)RUX(1)Y(v + IZ)

= RX(1)YZ(v)
[
RUX(2)Y(v1)R

UX(2)Z(v1 + IY )RUYZ(v1)R
X(2)YZ(v1 + IU)

]
×RUX(1)Z(v)RUX(1)Y(v + IZ)

= RUX(2)Y(v1)R
UX(2)Z(v1 + IY )

× [
RX(1)YZ(v)RUYZ(v + X(1))RUX(1)Z(v)RUX(1)Y(v + IZ)

]
RX(2)YZ(v1 + IU)

= RUX(2)Y(v1)R
UX(2)Z(v1 + IY )

× [
RUX(1)Y(v)RUX(1)Z(v + IY )RUYZ(v)RX(1)YZ(v + IU)

]
RX(2)YZ(v1 + IU)

= RUX(2)Y(v + IX(1) )RUX(1)Y(v)RUX(2)Z(v + IX(1) + IY )RUX(1)Z(v + IY )

×RUYZ(v)RX(1)YZ(v + IU)RX(2)YZ(v + IX(1) + IU)

= RUXY(v)RUXZ(v + IY )RUYZ(v)RXYZ(v + IU). (62)



1176 G von Gehlen et al

From the third to the fourth line of (62) within the inserted brackets we used the MTE for the
smaller set (U,X(2), Y, Z). In order to isolate the terms containing X(2) the order of factors
in the second line of (61), which was used in the first step, is crucial. Going from the fifth to
the sixth line in the brackets we used the MTE for (U,X(1), Y, Z). In the other steps of (62)
we just commuted or combined various terms. The last step is made possible by the ‘reverse’
order of factors in the last line of (61). �

4. Special cases: solving the tetrahedron equation

4.1. Compact algebraic curve

Now let N0 = N1 = N2 = N3 = M . Starting from the generic parametrization of the MTE
(55), the usual tetrahedron equation is obtained if

R(v) ≡ R(v + I) and ρ = 1. (63)

This is the case when

IU = IX = IY = IZ = 0 on Jac(�g) (64)

and the ratios of θ -functions (25) are periodical.
According to Abel’s theorem, (64) means that there are four meromorphic functions

u, x, y, z on �g with the divisors

(u) =
M−1∑
n0=0

U ′
n0

−Un0
(x) =

M−1∑
n1=0

X′
n1

−Xn1

(y) =
M−1∑
n2=0

Y ′
n2

−Yn2 (z) =
M−1∑
n3=0

Z′
n3

−Zn3 .

(65)

As is well known (see, e.g., theorem 10-23 of [20]), conditions (64) are a strong restriction for
the type of �g: �g is the algebraic curve given by the polynomial equation

P(x, y)
def=

M∑
a,b=0

xaybpa,b = 0. (66)

The choice of any pair of x, y, z, u produces an equivalent polynomial equation. The form of
the polynomial P(x, y) provides the restriction for the genus,

g � (M − 1)2. (67)

Thus we come to

Theorem 3. Let �g be the compact algebraic curve defined by the polynomial equation (66).
Let four sets of U ′

n0
, Un0

, X′
n1

, Xn1
, Y ′

n2
, Yn2

and Z′
n3

, Zn3
, nk = 0, . . . , M − 1, be the divisors

of four meromorphic functions u, x, y, z on �g . Then the tetrahedron equation is satisfied

R123(x, y, z)R145(u, y, z)R246(u, x, z)R356(u, x, y)

= R356(u, x, y)R246(u, x, z)R145(u, y, z)R123(x, y, z)
(68)

where four matrices are the same matrix function of different arguments,

R(x, y, z) = R(v;X′, X;Y ′, Y ;Z′, Z) etc (69)

defined via (43), (47), (49) and (65).
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According to the conventional terminology, one may say that u, x, y, z are the spectral
parameters, the moduli of �g are the moduli of the tetrahedron equation and vector v is a
kind of deformation parameter.

Theorem 3 may also be proved differently, without mentioning the simple MTE. In this
alternative approach one considers the auxiliary linear problem for the whole box and the
corresponding mappings. See, e.g., [21, 22] for the description of this method and [23] for
the parametrization of the classical equations of motion. Remarkably, in this alternative way
the spectral curve (66) appears naturally from the linear problem.

4.2. Simple tetrahedron equation for the ZBB case recovered

In section 1 we discussed the ZBB model and its R-matrix (7). We now show how our scheme
contains this case. Formally ZBB’s tetrahedron equation corresponds to (68) with M = 1. It
gives g = 0, i.e. the spectral curve is the sphere with

E(X, Y ) = X − Y√
dX dY


( ) ≡ 1. (70)

Here the formal theta function has no argument since the Jacobian is zero-dimensional.
Conditions (64) therefore are out of use, and the parametrization (30) and (31) contains
the Nth roots of the cross-ratios such as (X−Z)(X′−Z′)

(X′−Z)(X−Z′) . One may show that the number of
independent cross-ratios is the number of variables X,X′, . . . minus three. Therefore, the
single R-matrix contains 6 − 3 = 3 independent complex parameters (as it should), and
the simple tetrahedron equation contains 8 − 3 = 5 independent complex parameters (again
as it should). It means that the tetrahedral condition, which appears in Zamolodchikov’s
parametrization of R in terms of spherical triangles, is taken into account automatically.
Moreover, the parametrization with the help of the cross-ratios automatically takes into
account the geometric structure of any set of planes in three-dimensional Euclidean space.
The parametrization of the inhomogeneous Zamolodchikov–Bazhanov–Baxter model in terms
of cross-ratios corresponding to the g = 0 limit of (30), (31) and (47) has already been used
in [24].

4.3. Chessboard model

Previously derived ‘chessboard models’ of the lattice statistical mechanics based on the
modified tetrahedron equation [10, 11] are of course related to our considerations. The
term ‘chessboard’ appeared as the visual interpretation of the cubic lattice with M = 2 being
homogeneous. It means that the cubic lattice consists of eight different types of vertices (i.e.
eight different types of Boltzmann weights)—a kind of three-dimensional analogue of the
chessboard with eight different colours of the cells.

The models described in [10, 11] are at first the so-called IRC-type models, but with the
help of vertex–IRC correspondence [8] one may construct their vertex reformulation. Thus
the model implicitly described in [11] is equivalent to M = 2, g = 1 of our scheme. For
g = 1 the curve and its Jacobian are isomorphic, so that without loss of generality one may
chose

IX
Y = X − Y ∈ C/Z + Zτ. (71)

Further, one may use θ1


(v) = θ1(v, τ ) ≡
∞∑

n=−∞
exp [iπτ(n + 1/2)2 + 2iπ(v + 1/2)(n + 1/2)] (72)
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as the basic theta function, and E(X, Y ) ∼ θ1(X − Y) as the prime form. These formulae
simplify definitions (25). Periodicity conditions (65) may be chosen

X′
0 − X0 + X′

1 − X1 = Y′
0 − Y0 + Y′

1 − Y1 = Z′
0 − Z0 + Z′

1 − Z1 = U′
0 − U0 + U′

1 − U1 = 1. (73)

Note, the 1 in the right-hand side of (73) is equivalent to τ (due to the Jacobi transform), while
0 instead of 1 in the right-hand side of (73) gives a trivial model.

The model explicitly described before in [10] corresponds to M = 2, g = 1, X0 = X1,

X′
0 = X′

1, Y0 = Y1, Y′
0 = Y′

1, Z0 = Z1, Z
′
0 = Z1

′ etc with the condition (73). This choice leads
to the identification of the parameters in (43)

Rn = Rn+e1+e2 = Rn+e1+e3 = Rn+e2+e3 (74)

so the cells of this three-dimensional chessboard have only two ‘colours’.
Note that the vertex–IRC duality is not exact because it changes the boundary conditions.

5. Conclusions

We considered a large class of integrable 3D lattice models which have Weyl variables at
Nth root of unity as dynamic variables. We have shown how the Boltzmann weights can be
conveniently parametrized in terms of Nth roots of theta functions on a Jacobian of a compact
Riemann surface. The Fermat relations of the points determining the Boltzmann weights
are simple Fay identities and the classical equations determining the scalar parameters are a
consequence of a double-Fay identity. In the modified tetrahedron equation we have four pairs
of arbitrary points on the Riemann surface in simple permuted combinations.

This parametrization allows a compact formulation of the rules to form fused Boltzmann
weights R ∈ End C

3NM2
which are the partition functions of open boxes of arbitrary size. The

R obey the modified tetrahedron equation and are again parametrized terms on Nth roots of
theta functions on the Jacobian of a genus g = (M − 1)2 compact Riemann surface �g . The
spectral parameters of the vertex weight R are three meromorphic functions on the spectral
curve �g . For the case that the Jacobi transforms become trivial the R obey the simple
tetrahedron equation. The Zamolodchikov–Baxter–Bazhanov model and the chessboard
model are obtained as special cases.

So, the scheme discussed here contains and generalizes many known 3D integrable
models. The hope is that the framework is now sufficiently general to contain physically
interesting models with a non-trivial phase structure. However, to get information on partition
functions, either analytically or approximately, is still a very difficult open problem. There is
no way known to generalize Baxter’s special method [26] by which he obtained the partition
function of the ZBB model.
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